On Domination Number of 4-Regular Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

On the Independent Domination Number of Random Regular Graphs

A dominating set D of a graph G is a subset of V (G) such that for every vertex v ∈ V (G), either in v ∈ D or there exists a vertex u ∈ D that is adjacent to v. We are interested in finding dominating sets of small cardinality. A dominating set I of a graph G is said to be independent if no two vertices of I are connected by an edge of G. The size of a smallest independent dominating set of a g...

متن کامل

Domination and Signed Domination Number of Cayley Graphs

In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.

متن کامل

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

Connected domination of regular graphs

A dominating set D of a graph G is a subset of V (G) such that for every vertex v ∈ V (G), either v ∈ D or there exists a vertex u ∈ D that is adjacent to v in G. Dominating sets of small cardinality are of interest. A connected dominating set C of a graph G is a dominating set of G such that the subgraph induced by the vertices of C in G is connected. A weakly-connected dominating set W of a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2004

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-004-6438-0